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Abstract

Calculation of stresses within a soil body due to surface loading is a required step when designing 

buried commodities and subgrade wall structures. The Boussinesq equation is commonly used for 

determining stresses in soil due to surface loading, with examples for use found industry-wide. 

However, the available formulations have limitations, or they only cover simple cases. The purpose 

of this work is to review the derivation of the Boussinesq equation for vertical and lateral stresses 

in a soil body and to present several new, closed-form solutions for various surface load cases, 

including finite line and finite area lo ads. The formulations are presented as functions of Cartesian 

coordinates such that the stress at any point in the subsurface plane of interest can be found, not just 

the peak stress or the stress contour at a specific l ine. This is particularly useful when considering 

load distribution at a lateral extent from a finite loading, which may be significantly lower than the 

peak loading.

INTRODUCTION

Background

Elastician Joseph M. Boussinesq (1885) solved the problem of stress distribution within an 

elastic, isotropic, infinite h alf-space when c onsidering a  p oint l oad a t i ts p lanar s urface i n the 

1880s. In 1920, it was apparently first proposed by John H. Griffith of Iowa State College that 

the Boussinesq theory could be applied to the field of soil mechanics (U.S. Bureau of Standards
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1920). Since then, many studies (Feld (1923), Gerber (1929), Newmark (1935), Spangler (1938),23

Haegler (1954), James and Brown (1987), and Rehnman and Broms (1972), for example) have24

been performed to investigate the applicability of the Boussinesq theory for determining the stress25

distribution in soils due to surface loading or due to footing pressures. Soil, being an inelastic26

and anisotropic material, does not behave as perfectly as assumed by the Boussinesq theory, so27

experimenters have suggested a number of modifications to the basic formulations (see Spangler28

(1938), Haegler (1954), Terzaghi (1954), James and Brown (1987), and Abdel-Karim (1990)).29

This paper reviews the Boussinesq theory and its derivations with respect to its use in the30

current practice of soil mechanics. It expands upon and is inspired by the work of Newmark (1935)31

and Marohl (2014), among others. The origins of known formulations are reviewed, and new32

derivations for special cases are presented. To the author’s knowledge, the formulations presented33

in Appendix I of this paper have not been previously published.34

Given the universal use of computers in modern engineering practice, having a programmable35

methodology for subsurface load determination will lead to efficiency in design. For finite loading,36

the consideration of subsurface stress distribution at a lateral extent from the load location can37

be used to reduce the total loading on a buried commodity. This article aims to provide such a38

methodology for commonly-encountered surface loading types.39

To begin, the theoretical basis for the vertical and lateral stresses in a semi-infinite elastic body40

is reviewed.41

Vertical Stress Due to Concentrated Surface Load42

As determined by Boussinesq (1885) in the third formula of Equation 83bis, the vertical stress

due to an elementary load on the surface of an elastic, homogenous, isotropic half-space is given as

?I =
33P
2c

I2

A4
I

A

where 3P is the elementary load, I is the vertical distance from the surface to the datum point43

where the stress is found, A =
√
G2 + H2 + I2, and the GH-plane defines the soil surface. To convert to44
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terms commonly used in today’s literature, substitute the point load & for 3P, @E for ?I, and ' for45

A. Figure 1 illustrates the coordinate system and the variables used. Thus, Boussinesq’s Equation46

83bis is rewritten as47

@E (G, H) = 3&2c
I3

'5
=
3&I3

2c

(
G2 + H2 + I2

)− 52 (1)48

Since (1) is written in terms of G, H, and I, it is readily suitable for programming into a computer.49

A typical contour plot of the vertical stresses due to a concentrated surface load is displayed in50

Figure 2. This plot uses a 10-kN point load and shows the load contour at a depth of 1 m. Note the51

bell shape typical of the vertical stresses determined using this method.52

The indefinite integral of (1) has the form shown in (2), given by Newmark (1935) and inde-53

pendently verified by the author. After integrating with respect to G, point load & is replaced by54

line load ?.55

3&I3

2c

∫ (
G2 + H2 + I2

)− 52
3G =

?I3

2c

[
G
[
2G2 + 3(H2 + I2)]

(H2 + I2)2 (G2 + H2 + I2) 32

]
(2)56

Integrating (2) with respect to H, the author finds (replacing line load ? with area load @)

?I3

2c

∫
G
[
2G2 + 3(H2 + I2)]

(H2 + I2)2 (G2 + H2 + I2) 32
3H =

@

2c

[
GHI(G2 + H2 + 2I2)

(G2 + I2) (H2 + I2)
√
G2 + H2 + I2

+ tan-1
(

GH

I
√
G2 + H2 + I2

)]
(3)

the second part of which (inside the inverse tangent) does not exactly match that determined by57

Newmark (1935). However, verification by differentiation shows this integral to also be valid, and58

it is slightly simpler than Newmark’s.59

Radial Stress Due to Concentrated Surface Load60

Boussinesq (1885), on pages 106-107, notes that (translated from French)61

...by means of formulas (81) or (43), the circular conaxial cylinders described around62

the I-axis or the force 3P undergo, per unit area, compressions (positive or negative)63
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whose normal component is64

3P
2cA2

[
3
I

A

(
1 − I

2

A2

)
− `

_ + `
A

A + I

]
(4)65

Again substitute the point load& for 3P and ' for A. The coefficients ` and _ are known as Lamé’s

Constants, and according to Timoshenko and Goodier (1970) have the values

` =
�

2(1 + a) _ =
a�

(1 + a) (1 − 2a)

where � is the modulus of elasticity and a is Poisson’s ratio of the material. Substituting these66

into (4) and rearranging, one finds that the radial stress @A (the “normal component" identified by67

Boussinesq above) is68

@A =
&

2c'2

[
3A2I
'3
− (1 − 2a)'

' + I

]
(5)69

Note that this equation is written using polar coordinates and it considers the stress at a certain70

radial distance ' from the point load, with the stress component applied along the radius. When71

considering the lateral stress on a flat wall at distance G from a point load as in Figure 3, (5) can be72

adjusted as such:73

@G (H, I) = k&

2c

[
3G2I

(G2 + H2 + I2) 52
− 1 − 2a
(G2 + H2 + I2) + I

√
G2 + H2 + I2

]
(6)74

See discussion in the next section for factor k. Note that often (6) is further simplified by75

considering that Poisson’s ratio for the material is 0.50 (i.e., the material is incompressible).76

This assumption is sufficient, and conservative, for most purposes in evaluating the lateral stress77

transmitted through soil (see Figure 4), and is commonly used in industry standards, such as78

AASHTO (2017). As shown in Figure 4, Poisson’s ratios less than 0.50 not only result in reduced79

lateral stresses, but they also predict tensile stresses in portions of the soil.80

Figure 5 displays a typical contour plot of the lateral stress due to a concentrated surface load.81

A 40-kN load is considered at 1 m distance from the vertical wall surface, and Poisson’s ratio is82

taken as 0.50.83
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The first indefinite integral of (6) with respect to H is shown below in (7).84

k?

2cG

[
G3HI(3G2 + 2H2 + 3I2)
(G2 + I2)2(G2 + H2 + I2) 32

− (1 − 2a)
[
tan-1

( H
G

)
− tan-1

(
HI

G
√
G2 + H2 + I2

)]]
(7)85

Equation 6 can also be integrated instead with respect to G, as in (8).86

k?

2c

[
G3I

(H2 + I2) (G2 + H2 + I2) 32
− (1 − 2a)

H

[
tan-1

(
G

H

)
− tan-1

(
GI

H
√
G2 + H2 + I2

)]]
(8)87

In practice, the second part of (8) that is multiplied by (1 − 2a)/H is problematic since it cannot be88

evaluated at H = 0. For this case, consider the limit as H approaches zero:89

lim
H→0

1
H

[
tan-1

(
G

H

)
− tan-1

(
GI

H
√
G2 + H2 + I2

)]
=

√
G2 + H2 − I

GI
(9)90

Therefore, re-write (8) as

k?

2c

[
G3I

(H2 + I2) (G2 + H2 + I2) 32

−(1 − 2a)




√
G2 + H2 − I

GI
if H = 0

1
H

[
tan-1

(
G

H

)
− tan-1

(
GI

H
√
G2 + H2 + I2

)]
otherwise


(10)

For further integration of (7) in terms of G or of (8) in terms of H, the portion of the equation91

that is multiplied by (1− 2a) does not integrate cleanly. Therefore, Poisson’s ratio is assumed to be92

equal to 0.50, and this portion of the equation simplifies to zero. Thus, the partial indefinite double93

integral of (6) is found below in (11).94

k@

2c

[
tan-1

(
GH

I
√
G2 + H2 + I2

)
− GHI

(G2 + I2)
√
G2 + H2 + I2

]
(11)95
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Rigid vs. Yielding Walls96

Research by Spangler (1938) suggests that for subgrade walls with a high degree of rigidity,97

the interrupting effect of the wall effectively increases the lateral stress resisted by the wall beyond98

that which would be predicted by a purely elastic solution. The author has chosen to represent this99

effect with symbol k herein. Spangler and AASHTO consider a factor of k = 2 for rigid walls.100

Unless justification can be provided to consider the wall non-rigid, k should conservatively be101

taken as 2 in all cases. See further discussion in AASHTO (2017), Section 3.11.102

NEW STRESS FORMULATIONS103

Considering the equations determined in (2), (3), (7), (8), and (11), it is possible to develop104

closed-form solutions to the Boussinesq problem for different load patterns, the derivations of105

which are available in Appendix II. Certain formulations, especially those for infinite loading, have106

been available in the literature for some time (see Poulos and Davis (1991) for example). It should107

also be noted that solutions for finite area loading have also been available; however, these have108

limitations. For example, Newmark (1935) and Gray (1936) provide means of finding the vertical109

stress under the corner of a finite rectangular area, which one can extrapolate to find the loading at110

any point under the rectangle by considering rectangular areas of different sizes. This is, however,111

a time-consuming process, and it makes determining the vertical stress contour on the subgrade112

very tedious.113

Review of the literature also shows that Poisson’s ratio is typically assumed equal to 0.50 when114

developing the formulations for lateral stress. As noted by AASHTO (2017), Poisson’s ratio for115

soil can vary from about 0.25 (granular and stiff cohesive soils) to 0.49 (soft cohesive soils), and116

as such, load reductions can be realised if the soil properties are known. Where appropriate, these117

lateral stress solutions are presented anew, this time with Poisson’s ratio of the soil considered in118

the formulation.119

As far as the author can tell, closed-form solutions for subsurface stresses at any point due to120

finite line and finite area loads are not available and are therefore presented for the first time herein.121

Figures 10 to 17 in Appendix I present the new formulations for vertical and lateral stress in soil due122
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to different load types. These are presented as functions of Cartesian coordinates and are relatively123

easy to program into even simple computer software.124

DESIGN PROCEDURE125

To find the stress contour for a subsurface commodity using the formulations contained in126

Appendix I, consider the following process:127

1. Categorize surface loads based on load type (point, line, area, etc.).128

2. Determine locations of loaded areas and assign coordinates using a Cartesian grid. Loca-129

tions should all be consistent with an established coordinate origin; see Figures 10 to 17 for130

coordinate system.131

3. Assign discrete functions for each loading (eg. 51(G, H) for the first load, 52(G, H) for the132

second, etc.).133

4. Combine the contributions of each load using superposition ( 52><1 =
∑=
1 5= (G, H)).134

5. A graph of the combined stress contour can be plotted, if desired (similar to Figure 6). This135

provides a good check that the formulations are entered correctly.136

6. If the location of the subsurface commodity is known relative to the different surface loads,137

the relative location can be used to determine themaximum stress at the commodity location.138

Alternatively, in the case of a load moving over a stationary commodity, the peak stress for139

the entire plot can be found.140

7. Further load reduction can be realized by integrating the combined stress contour over the141

effective width and length of the commodity and averaging, which is especially beneficial142

when acute peaks are observed in the contour (see Marohl (2014)).143

DESIGN EXAMPLE144

For a sample problem, consider the crawler crane setup shown in Figure 7. Spreader mats are145

used to reduce the bearing pressures under the tracks to an acceptable value. The crane spreader146

mats are set up 2 m from the exterior rigid subgrade wall of a building, and the vertical bearing147

pressure from the spreader mats will induce lateral stresses on the wall. Figure 7 shows the bearing148
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pressures under the mats, and for this particular lift the rightmost mat sees a higher bearing pressure.149

The critical variables are summarized in Table 1.150

Prior to the finite area loading formulation presented in Figure 17, the best way to approximate151

this load pattern using the available literature may have been to use the formulation for an infinite152

strip load. Using the formulations in Figure 17 and the method of superposition, one can combine153

the results for the left and right spreader mats and determine the plot of the lateral stress on the154

subgrade wall, as in Figure 8. By approximating the spreader mats as an infinite strip load of 150155

kPa, width of 5 m, at a distance of 2 m from the wall, the resulting lateral stress is much larger, as156

in Figure 9. For comparison, the plot of the lateral stress due to the finite area loads at H = 2.365157

m, which is the line of maximum stress in Figure 8, is also included in Figure 9. The author has158

entered the finite area and infinite strip formulations into a calculation package to determine the159

maxima of the functions. These are approximately 27 kPa (finite area loads) and 71 kPa (infinite160

strip load), so use of the finite area formulation results in a reduction in maximum lateral stress of161

62%.162

CONCLUSIONS163

Presented herein is a discussion on the historical basis of the use of the Boussinesq formula for164

determining the vertical and lateral stresses in a soil mass. Included in Appendix I also are new165

closed-form solutions for different surface load patterns using the Boussinesq equations. Since166

they use simple algebraic and trigonometric functions, these closed-form solutions are useful for167

computer programming packages lacking advanced numeric integration capabilities.168

Depending on the exact configuration of the surface loads, consideration of finite loading169

patterns can lead to significantly lower subgrade stresses as compared to approximation using170

infinite loading patterns, thereby reducing material costs in the design phase. Alternatively, for171

re-evaluation of existing structures and subsurface commodities, refinement in applied loading can172

reduce or remove the requirement for costly reinforcement.173

As shown in Appendix I, some of the developed closed-form equations can be lengthy and174

cumbersome. Assuming that more advanced software packages are available to the user that have175
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the capability, it may be more concise to perform the numeric integration directly from (1) and (6)176

in lieu of using the closed-form solutions.177

APPENDIX I: NEW STRESS FORMULATIONS178

This Appendix contains the new closed-form solutions of the Boussinesq equations for vertical179

and lateral stress in soil due to different load types. Presented in Figures 10 to 17 are the load pattern180

and example subgrade stress distribution for the load type, along with the correlating formulations181

developed by the author.182

APPENDIX II: FORMULA DERIVATION AND VALIDATION183

Vertical Stress Due to Finite Line Load184

Consider a finite line load starting at G = 0 and ending at G = 1, parallel to the G-axis, located185

at H = 2, as depicted in Figure 10. In this case, to determine the formulation for the vertical stress186

at depth I at any coordinate (G, H), the integral evaluated in (2) is adjusted as shown in (12).187

@E (G, H) = 3?I
3

2c

∫ 1−G

0−G

[
<2 + (2 − H)2 + I2]− 52 3< (12)188

Following (2), evaluation of this integral results in the equation for the vertical stress due to a finite

line load shown in Figure 10. To validate, compare the results of (12) to that of the infinite line

loading formulation in Poulos and Davis (1991):

@E (H) = 2?
c

I2

(H2 + I2)2

Consider a 10-kN/m line load distributed over 1-m, 5-m, and infinite extents, with the vertical189

stress found at a depth of 2 m below the midpoint of the line load. The stress contours for these190

conditions are displayed in Figure 18. As the length of the line load relative to the depth increases,191

the vertical stress approaches that found for an infinite line load. Therfore, the results of (12) are192

consistent with the infinite line load formulation, and the new formulation in Figure 10 is valid.193
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Lateral Stress Due to Finite Line Load Parallel to Wall194

Consider a finite line load starting at H = 2 and ending at H = 3, parallel to the wall face, located195

at G = 0, as depicted in Figure 11. In this case, to determine the formulation for the lateral stress at196

any coordinate (H, I), integrate (6) as shown in (13).197

@G (H, I) = k?

2c

∫ 3−H

2−H


302I[

02 + =2 + I2] 52 −
1 − 2a[

02 + =2 + I2] + I√02 + =2 + I2

3= (13)198

Following (7), evaluation of the integral in (13) results in a lengthy equation, which is broken into199

parts 50 and 51 for ease of use (see Figure 11). Part 51 is multiplied by a term containing Poisson’s200

ratio and, as noted previously, can be omitted if one assumes a = 0.50.201

For validation, consider a 70-kN/m line load, 2 m from the wall face, distributed over 6-m and

10-m extents with Poisson’s ratio taken as 0.40 and 0.50, respectively, in two separate cases. Also

consider an infinite line loading of the same magnitude and at the same distance from the wall,

using the following equation per Poulos and Davis (1991), which does not include the effect of

Poisson’s ratio:

@G (I) = 2?
c

G2I

(G2 + I2)2

Value k is taken as 1. The stress contours for these conditions are displayed in Figure 19. Similar202

to the previous section, as the length of the line load relative to the distance from the wall increases203

and as a approaches 0.50, the lateral stress converges on that found for an infinite line load, thereby204

validating the new formulation in Figure 11.205

Lateral Stress Due to Finite Line Load Perpendicular to Wall206

Consider a finite line load starting at G = 0 and ending at G = 1, perpendicular to the wall face,

located at H = 2, as depicted in Figure 12. In this case, to determine the formulation for the lateral
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stress at any coordinate (H, I), integrate (6) as shown in (14).

@G (H, I) = k&

2c

∫ 1

0


3G2I[

G2 + (2 − H)2 + I2] 52
− 1 − 2a[

G2 + (2 − H)2 + I2] + I√G2 + (2 − H)2 + I2
]
3G (14)

Integration follows (10), which results in a lengthy equation that is split into parts 50 and 51 (see207

Figure 12). Part 51 is multiplied by a term containing Poisson’s ratio and can be omitted if one208

assumes a = 0.50.209

It can be shown by rearranging (14) that the formulation for the lateral stress contour at H = 2210

matches that given in AASHTO (2017), so this formulation is valid by comparison. However, for211

H ≠ 2, the formulation must be validated. Consider a short line load of 1000 kN/m, 0.1 m long,212

located 1 m from the wall face (0 = 1 m, 1 = 1.1 m). Two cases are run, one with a = 0.40 and the213

other with a = 0.50. For comparison, use a 100 kN point load per (6), also located 1 m from the214

wall and with a = 0.50, and also assume that both loads are located at H = 0 and that k = 2. The215

lateral stress contour is found at H = 0.5 m in order to validate the formulation in Figure 12. Figure216

20 displays the stress contours for these cases. In the author’s testing, if the point load is located217

1.05 m from the wall (centered on the finite line load), the curves for the point load and the finite218

line load with a = 0.50 overlap.219

Lateral Stress Due to Infinite Line Load Parallel to Wall220

Figure 13 displays an infinite line load parallel to a vertical wall surface, located at G = 0. The221

lateral stress is found by integrating (6) and evaluating at infinite extents:222

@G (H, I) = k?

2c

∫ ∞

−∞


302I[

02 + H2 + I2] 52 −
1 − 2a[

02 + H2 + I2] + I√02 + H2 + I2

3H (15)223

This is accomplished by considering the indefinite integral in (7) and taking the limits as H → ∞224

and H → −∞, which results in the equation in Figure 13. The first part of this equation has225
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been known in the literature for some time (see Poulos and Davis (1991)); however, the portion226

containing Poisson’s ratio appears to be shown for the first time herein.227

For validation, consider a 70-kN/m line load, 2 m from the wall face, with Poisson’s ratio taken228

as 0.40 and 0.45, respectively, in two separate cases. Also consider an infinite line loading of the229

same magnitude and at the same distance, using the equation per Poulos and Davis (1991), which230

does not include the effect of Poisson’s ratio. Value k is taken as 1. The stress contours for these231

conditions are displayed in Figure 21. As expected, the magnitude of the lateral stress increases232

and the formula developed by the author converges on that from Poulos and Davis as a approaches233

0.50.234

Vertical Stress Due to Infinite Strip Load235

The vertical stress below an infinite strip load is found first by finding the indefinite integral of236

the vertical stress formula per Poulos and Davis (1991), Eqn. 2.7b. The line load ? is replaced by237

area load @.238

@E (H) = 2@I
3

c

∫ [
H2 + I2]−2 3H = @

c

[
tan-1

(
H

I

)
+ HI

H2 + I2
]

(16)239

To determine the formula for the infinite strip loading in Figure 14, adjust (16) for the extents of240

the strip loading as shown below.241

@E (H) = 2@I
3

c

∫ 3−H

2−H

[
=2 + I2]−2 3= (17)242

The result of this intergral is shown in Figure 14 and is valid for any location G along the strip load.243

Note that this equation is often given in terms of an angle with respect to the vertical (see Poulos244

and Davis (1991)), which makes it appear, superficially, more simplified than determined herein.245

However, this requires additional steps by the user in order to translate the equation into a function246

of H and I, so the equation in Figure 14 is more readily suited to being programmed into a computer.247

To validate the infinite strip formula, consider a 50-kPa strip load distributed over a 1-m width.248

This is compared to a 50-kN/m line load, which is equivalent to the strip load, just concentrated on249

a line. For both, the vertical stress found at a depth of 2 m below the strip or the line. The stress250
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contours for these conditions are displayed in Figure 22 and they are nearly identical.251

Vertical Stress Due to Finite Area Load252

Consider a finite area load extending between G = 0 and G = 1 and between H = 2 and H = 3,253

as depicted in Figure 15. In this case, the vertical stress at depth I at any coordinate (G, H) is found254

by taking the double integral of (1), adjusted to substitute area load @ for point load &, as shown in255

(18).256

@(G, H) = 3@I
3

2c

∫ 3−H

2−H

∫ 1−G

0−G

[
<2 + =2 + I2]− 52 3< 3= (18)257

Evaluation of the integral in (18) results in a lengthy equation for the vertical stress due to a finite

area load. Since there are four parts of the equation that follow the same pattern as in (3), a generic

function for these parts is developed:

5 (V, X) = I(V − G) (X − H) [(V − G)2 + (X − H)2 + 2I2]
[(V − G)2 + I2] [(X − H)2 + I2]

√
(V − G)2 + (X − H)2 + I2

+ tan-1
[

(V − G) (X − H)
I
√
(V − G)2 + (X − H)2 + I2

]
(19)

The vertical stress at depth I and coordinate (G, H) can then be found as shown in Figure 15, with258

the values 0, 1, 2, and 3 replacing V and X as indicated.259

To validate the finite area formula, consider a 50-kPa area load distributed over a 1-m width and260

over lengths of 3 m and 6 m. This is compared to a 50-kPa infinite strip load, also of 1-m width.261

The vertical stress is found at a depth of 2 m below the surface, and the stress contour is centered262

on the midpoint of the area or the strip. The stress contours for these conditions are displayed in263

Figure 23. As the finite rectangular area elongates, the vertical stress contour converges to that of264

the infinite strip, as expected, thereby validating the formulations in Figure 15.265

Lateral Stress Due to Infinite Strip Load Parallel to Wall266

Figure 16 displays an infinite strip load parallel to a wall face. To find the equation for this case,267

start with the equation for for an infinite line load parallel to the wall face in Figure 13, replacing268

the line load ? with area load @, and integrating from G = 0 to G = 1. As before in (11), the portion269

13 Frazee, December 9, 2020



of the formula containing Poisson’s ratio is dropped assuming that a = 0.50.270

@G (I) = 2k@I
c

∫ 1

0

G2

(G2 + I2)2 3G =
@

c

[
0I

02 + I2 −
1I

12 + I2 + tan
-1

(
1

I

)
− tan-1

(
0

I

)]
(20)271

The inverse tangent portions of (20) can be combined using the trigonometric identity

tan-1 D − tan-1 E = tan-1
( D − E
1 + DE

)

tan-1
(
1

I

)
− tan-1

(
0

I

)
= tan-1

(
I(1 − 0)
I2 + 01

)

which has the advantage of removing the divide by zero issues in the equation. Thus, the lateral272

stress due to an infinite strip load is found per Figure 16.273

Similar to the case with the vertical stress due to an infinite strip load, the equation in Figure 16274

is typically given in terms of an angle with respect to the wall face (see AASHTO (2017)). However,275

the equation herein is more fitting for direct entry into a computer programming subroutine.276

For validation, consider a thin strip load of 1000 kPa, 0.1 m in width, starting 2 m from the wall277

face. Also consider an infinite line loading of 100 kN/m (effectively the same magnitude of loading278

as the infinite strip, just concentrated in a line) located 2 m from the wall, using the equation per279

Poulos and Davis (1991) given previously. Value k is taken as 1. The stress contours for these280

conditions are displayed in Figure 24. The two lines are nearly identical. In the author’s testing,281

the two lines overlap completely when the infinite line loading is placed 2.05 m away from the wall282

(i.e., centered on the infinite strip load).283

Consider also a special case of this loading where 0 = 0 and 1 is any positive number. In this284

case, (20) simplifies to285

@G (I) = k@

c

[
tan-1

(
1

I

)
− 1I

12 + I2
]

(21)286

This formulation also has divide by zero issues at I = 0 and must be conditioned. Taking the limit287
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as I → 0+, the portion of (21)inside the brackets converges to c/2, and therefore288

@G (I) =



k@

2
if I = 0

k@

c

[
tan-1

(
1

I

)
− 1I

12 + I2
]
otherwise

(22)289

It is also worth noting that when 1 → ∞, (22) converges to k@/2 for all depths of I, as one might290

expect for an infinite, uniform, vertical surcharge load.291

Lateral Stress Due to Finite Rectangular Area Load292

Consider a finite rectangular vertical pressure extending between G = 0 and G = 1 and between293

H = 2 and H = 3, as depicted in Figure 17. In this case, to determine the formulation for the lateral294

stress at depth I and location H, integrate (6) as shown in (23). Per (11), Poisson’s ratio is assumed295

to be 0.50.296

@G =
3k@I
2c

∫ 3−H

2−H

∫ 1

0

G2

[G2 + =2 + I2] 52
3G 3= (23)297

Evaluation of the integral in (23) results in a lengthy equation for the lateral stress due to a finite298

rectangular area load. Since there are four parts of the equation that follow the same pattern as in299

(11), a generic function for these parts is developed:300

5 (V, X) = tan-1
[

V(X − H)
I
√
V2 + (X − H)2 + I2

]
− VI(X − H)
[V2 + I2]

√
V2 + (X − H)2 + I2

(24)301

The lateral stress at depth I and location H can then be found as shown in Figure 17, with the values302

0, 1, 2, and 3 replacing V and X as indicated.303

To validate the finite area formula, consider a 50-kPa area load distributed over a 1-m width304

and over lengths of 3 m and 6 m (3 = −2 = 1.5 m and 3 m, respectively). This is compared to a305

50-kPa infinite strip load, also of 1-m width. All loads are located 2 m from the face of the wall306

(0 = 2 m and 1 = 3 m), k is taken as 2, and the stress contour is centered on the midpoint of the307

finite area (H = 0). The stress contours for these conditions are displayed in Figure 25. As the308

finite rectangular area elongates, the lateral stress contour converges to that of the infinite strip, as309
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NOTATION317

The following symbols are used in this paper:318

0, 1 = distances from the H-axis (m);

2, 3 = distances from the G-axis (m);

? = applied line load at soil surface (kN/m);

& = applied point load at soil surface (kN);

@ = applied area load at soil surface (kPa);

@E = vertical stress in horizontal soil layer (kPa);

@G = lateral stress on subgrade vertical surface (kPa);

tan-1 = inverse tangent function (result in radians);

G, H, I = Cartesian coordinates (m); and

k = wall rigidity factor (1 for flexible walls, 2 for rigid walls, see discussion).
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Load ID Type @ (kPa) 0 (m) 1 (m) 2 (m) 3 (m)

1 Finite Area 100 2 7 -3.5 -1.5
2 Finite Area 150 2 7 1.5 3.5

Table 1. Crane Spreader Mat Example Critical Variables
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Fig. 10. Vertical Stress Due to Finite Line Load
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Fig. 10. Vertical Stress Due to Finite Line Load
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Fig. 11. Lateral Stress Due to Finite Line Load Parallel to Wall
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Fig. 12. Lateral Stress Due to Finite Line Load Perpendicular to Wall
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Fig. 13. Lateral Stress Due to Infinite Line Load Parallel to Wall
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Fig. 14. Vertical Stress Due to Infinite Strip Load
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Fig. 15. Vertical Stress Due to Finite Area Load
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Fig. 16. Lateral Stress Due to Infinite Strip Load Parallel to Wall
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Fig. 17. Lateral Stress Due to Finite Area Load
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